

Fig. 2. Projection of the structure along c. The hydrogen bonds in the five-link chain with a single branch are indicated by dashed lines. The symmetry operations are defined in the footnote to Table 8. The aliphatic H atoms have been omitted.
an acceptor, which agrees with the above prediction, the donor-acceptor $\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(1)$ contact of $1.95 \AA$ is by no means indicative of a strong interaction. The donor-only $\mathrm{O}(3)-\mathrm{H} \cdots \mathrm{O}(5)$ distance of $2.19 \AA$ is much larger than the comparable bonds in monosaccharides (Jeffrey, Gress \& Takagi, 1977), and together with the appreciable deviation of the $\mathrm{O}(3)-$
$\mathrm{H} \cdots \mathrm{O}(5)$ angle from linearity, this hydrogen-bond interaction must be considered as a very weak bond.

References

Arnott, S. \& Scott, W. E. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 324-335.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Fries, D. C., Rao, S. T. \& Sundaralingam, M. (1971). Acta Cryst. B27, 994-1005.
Jeffrey, G. A., Gress, M. E. \& Takagi, S. (1977). J. Am. Chem. Soc. 99, 609-611.
Jeffrey, G. A., Pople, J. A., Binkley, J. S. \& Vishveshwara, S. (1978). J. Am. Chem. Soc. 100, 373379.

Jeffrey, G. A. \& Takagi, S. (1977). Acta Cryst. B33, 738742.

Jeffrey, G. A. \& Takagi, S. (1978). Acc. Chem. Res. 11 , 264-270.
Kanters, J. A., Batenburg, L. M. J., Gaykema, W. P. J. \& Roelofsen, G. (1978). Acta Cryst. B34, 3049-3053.
Kanters, J. A., Gaykema, W. P. J. \& Roelofsen, G. (1978). Acta Cryst. B34, 1873-1881.

Kanters, J. A., Roelofsen, G., Alblas, B. P. \& Meinders, I. (1977). Acta Cryst. B33, 665-672.
Kim, S. H. \& Rosenstein, R. D. (1967). Acta Cryst. 22, 648-656.
Stewart, J. M. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sundaralingam, M. (1968). Biopolymers, 6, 189-213.
Takagi, S. \& Jeffrey, G. A. (1977). Acta Cryst. B33, 3033-3040.
Tse, Y.-C. \& Newton, M. D. (1977). J. Am. Chem. Soc. 99, 611-613.

Acta Cryst. (1979). B35, 1156-1162

The Crystal and Molecular Structure of 4-O- β-D-Glucopyranosyl-D-glucitol

By W. P. J. Gaykema and J. A. Kanters*
Structural Chemistry Group, Rijksuniversiteit Utrecht, Transitorium 3, Padualaan 8, Utrecht, The Netherlands

(Received 4 December 1978; accepted 9 February 1979)

Abstract

4- O - β-D-Glucopyranosyl-D-glucitol, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{11}$, is orthorhombic, space group $P 22_{1} 2_{1}$, with $a=$ $5 \cdot 295(1), b=7 \cdot 770(1), c=35 \cdot 514$ (6) \AA and $Z=4$.

[^0]0567-7408/79/051156-07\$01.00

The structure was solved by direct methods and refined to $R(F)=0.033$ for 1542 reflexions. The glucose ring has the ${ }^{4} C_{1}$ chair conformation and the conformation of the primary alcohol group is gauche-gauche. The Catom chain of the glucitol residue has the bent $M s c, a p$, Psc (MAP) conformation and differs from that observed in the A form of D-glucitol and in the D-glucitol© 1979 International Union of Crystallography
pyridine complex which both have the bent MAA conformation. The conformation of the terminal hydroxyl groups is $A A$ in the glucitol residue and the A form of D-glucitol, and MP in the D-glucitol-pyridine complex. The hydrogen-bond pattern is very complicated in that three donors form bifurcated hydrogen bonds. Two hydrogen bonds are intramolecular.

Introduction

An important conformation-stabilizing factor of α - and β-($1 \rightarrow 4$)-linked glucopyranoside disaccharides is the intramolecular hydrogen bond which links the two pyranose residues (Sundaralingam, 1968). In α-maltose (Takusagawa \& Jacobson, 1978) and β-maltose (Gress \& Jeffrey, 1977), both having a $1 a, 4 e$ glycosidic link, the intramolecular hydrogen bond involves two hydroxyl groups, whereas in $1 e, 4 e$-linked cellobiose (Chu \& Jeffrey, 1968) the bond is between a hydroxyl group and a ring O atom. In disaccharides composed of different monosaccharides and derivatives like α-lactose (Fries, Rao \& Sundaralingam, 1971), β-lactose (Hirotsu \& Shimada, 1974), turanose (Kanters, Gaykema \& Roelofsen, 1978), sucrose (Brown \& Levy, 1973), methyl β-maltoside (Chu \& Jeffrey, 1967) and phenyl α-maltoside (Tanaka, Tanaka, Ashida \& Kakudo, 1976) the intramolecular hydrogen bond is also seen to play a dominant role in determining the conformation of the glycosidic link. In these compounds the formation of an intramolecular bond is facilitated by the rotational flexibility of the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bonds of the bridge.

In the class of hexosylhexitols, composed of an aldopyranose linked to a hexitol by a $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bridge, the acyclic unfolded half of the molecule is much more flexible than the rigid pyranose ring. In order to study the effect of replacing a pyranose ring by a polyalcoholic side chain in a disaccharide on the conformation of the glycosidic link and intramolecular hydrogen bonding, the structure analysis of $4-O-\beta-\mathrm{D}-$ glucopyranosyl-D-glucitol was undertaken. This hexosylhexitol is derived from the disaccharide β-cellobiose and can be obtained by reductive ring opening of its reducing pyranose ring. Recently Takagi \& Jeffrey (1977a) reported the structure of the first member of the class of hexosylpentitols, 4-O- β-D-galacto-pyranosyl-L-rhamnitol, and showed the presence of an intramolecular hydrogen bond linking a terminal rhamnitol hydroxyl group to the galactose ring O atom.

Experimental

The title compound was provided by Dr J. F. G. Vliegenthart of the Organic Chemistry Laboratory of the University of Utrecht. Crystals were grown from an
aqueous methanolic solution at room temperature. Photographs showed that the crystal system is orthorhombic with space group $P 2_{1} 2_{1} 2_{1}$. Accurate cell dimensions and intensities were measured on an automatic Nonius CAD-4 diffractometer with Zr-filtered Mo $K \alpha$ radiation $(\lambda=0.71069 \AA)$ and the $\omega-2 \theta$ scan technique. The crystal data are summarized in Table 1. 1542 independent intensities were collected up to $\sin \theta / \lambda=0.60 \AA^{-1}$ of which 513 with $I<2 \cdot 5 \sigma(I)$ were considered unobserved. The intensity data were corrected for Lorentz-polarization and absorption (Coppens, 1970).

Structure determination and refinement

The structure was solved with the MULTAN system (Main, Lessinger, Woolfson, Germain \& Declercq, 1974) using 300 normalized structure factors with $|E|$ $>1 \cdot 30$. The first E map revealed all nonhydrogen atoms. After block-diagonal least-squares refinement with anisotropic thermal parameters, a difference map showed all 24 H atoms with electron densities ranging from 0.27 to $0.59 \mathrm{e}^{-3}$. The positional parameters of the H atoms, with constant isotropic thermal parameters equal to those of the carrier atoms, were included in the refinement. Full-matrix refinement gave a final $R=\sum_{F_{o}}| | F_{o}\left|-\left|F_{c}\right|\right| /\left|F_{o}\right|=0.033$ and $R_{w}=$ $\left[\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}\right]^{c / 2}=0.019$. The quantity minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ with weights $w=$ $\sigma^{-2}\left(F_{o}\right)$. In the last stage of the refinement an isotropic correction for secondary extinction was applied (Larson, 1967). The final value of g was 2.8×10^{-3}, the goodness of fit was $1 \cdot 69$, and the average shift/error for all parameters was 0.016 . A final difference synthesis showed no peaks above 0.21 e \AA^{-3}. Scattering factors for C and O were taken from Cromer \& Mann (1968) and for H from Stewart, Davidson \& Simpson (1965). Positional parameters are listed in Tables 2 and 3.* Refinement and subsequent calculations were performed with the XRAY system (Stewart, 1976).

[^1]Table 1. Crystal data for 4-O- β-D-glucopyranosyl-Dglucitol

Molecular formula	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{11}$	Space group	P2,2,2,
Formula weight	344.3	$V\left(\AA^{3}\right)$	1461.2
Crystal system	Orthorhombic	Z	4
$a(\AA)$	5.295 (1)	$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.564
$b(\AA)$	7.770 (1)	μ (Mo Ko $)\left(\mathrm{mm}^{-1}\right)$	0.1504
c (A$)$	35.514 (6)	λ (Mo K(t) (A)	0.71069
Systematic absences	$\begin{aligned} & h 00, h=2 n+1 \\ & 0 k 0, k=2 n+1 \\ & 00 l, l=2 n+1 \end{aligned}$	Crystal dimensions (mm)	$0.39 \times 0.24 \times 0.06$

Table 2. Fractional atomic coordinates $\left(\times 10^{5}\right)$ of the C and O atoms in 4-O- β-D-glucopyranosyl-D-glucitol

The estimated standard deviations are given in parentheses and refer to the last decimal position of respective values.

	x	y	z
$\mathrm{C}(1)$	$22562(85)$	$3484(52)$	$63460(11)$
$\mathrm{C}(2)$	$47525(84)$	$-4214(50)$	$64726(11)$
$\mathrm{C}(3)$	$45258(79)$	$-9273(46)$	$68885(10)$
$\mathrm{C}(4)$	$39635(78)$	$7370(53)$	$71041(11)$
$\mathrm{C}(5)$	$14015(83)$	$13820(51)$	$69704(10)$
$\mathrm{C}(6)$	$4366(9)$	$29908(54)$	$71582(11)$
$\mathrm{O}(1)$	$26398(54)$	$9477(30)$	$59796(7)$
$\mathrm{O}(2)$	$53819(57)$	$-18743(37)$	$62542(6)$
$\mathrm{O}(3)$	$68515(62)$	$-16905(37)$	$70029(7)$
$\mathrm{O}(4)$	$37696(51)$	$4569(38)$	$75012(8)$
$\mathrm{O}(5)$	$16054(52)$	$17836(32)$	$65749(6)$
$\mathrm{O}(6)$	$21410(70)$	$4419(35)$	$71162(8)$
$\mathrm{C}\left(1^{\prime}\right)$	$-10397(95)$	$49407(55)$	$62145(12)$
$\mathrm{C}\left(2^{\prime}\right)$	$12822(88)$	$46361(50)$	$59838(11)$
$\mathrm{C}\left(3^{\prime}\right)$	$8636(88)$	$34083(51)$	$56501(10)$
$\mathrm{C}\left(4^{\prime}\right)$	$4174(80)$	$15569(49)$	$57891(10)$
$\mathrm{C}\left(5^{\prime}\right)$	$-3503(88)$	$2802(51)$	$54791(11)$
$\mathrm{C}\left(6^{\prime}\right)$	$17636(94)$	$-2616(59)$	$52202(12)$
$\mathrm{O}\left(1^{\prime}\right)$	$-3203(58)$	$6017(37)$	$65265(8)$
$\mathrm{O}\left(2^{\prime}\right)$	$20219(63)$	$62523(34)$	$58130(7)$
$\mathrm{O}\left(3^{\prime}\right)$	$29915(70)$	$34287(39)$	$54100(9)$
$\mathrm{O}\left(5^{\prime}\right)$	$-14877(54)$	$-12118(33)$	$56508(9)$
$\mathrm{O}\left(6^{\prime}\right)$	$7284(65)$	$-13700(41)$	$49398(10)$

Description of the structure

The conformation of the molecule and the numbering of the atoms are shown in Fig. 1. The glucose and glucitol moieties are denoted by unprimed and primed designators respectively.

Bond distances and angles involving C and O atoms are given in Tables 4 and 5 respectively. The $C-C$ bonds range from 1.496 (7) to 1.539 (6) \AA (mean $1.523 \AA$). The shortening of $C(5)-C(6)$ of the glucose side chain and of the two outer bonds, $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$, of the glucitol moiety has been observed in many pyranosides (Arnott \& Scott, 1972) and in some alditols (Jeffrey \& Kim, 1970; Kanters, Roelofsen \& Smits, 1977) respectively. The $\mathrm{C}-\mathrm{O}$ bonds range from 1.397 (5) to 1.449 (5) \AA (mean $1.428 \AA$). The bond lengths in the acetal sequence of bonds $C(5)-O(5)-C(1)-O(1)-C\left(4^{\prime}\right)$ display the characteristic variation observed in α - and β-pyranosides, in that the anomeric $\mathrm{C}(1)-\mathrm{O}(1)$ is short and that of the ring $\mathrm{C}-\mathrm{O}$ bonds the bond attached to $\mathrm{C}(1)$ is the shorter (Table 4). From observations on crystal structures (Jeffrey \& Takagi, 1977; Jeffrey, Pople, Binkley \& Vishveshwara, 1978) it is well established that the anomeric $\mathrm{C}-\mathrm{O}$ is shorter and that the difference between endocyclic $\mathrm{C}-\mathrm{O}$ bonds is less in β than in α-pyranosides: for 18α-pyranosides the mean values of $\mathrm{C}(1)-\mathrm{O}(1), \mathrm{C}(5)-\mathrm{O}(5)$ and $\mathrm{O}(5)-\mathrm{C}(1)$ are

Table 3. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and bond distances (\AA) of H atoms for $4-O-\beta-\mathrm{D}-\mathrm{gluco}-$ pyranosyl-D-glucitol

The e.s.d.'s are given in parentheses.

	x	y	z	C,O-H
$\mathrm{H}(\mathrm{C} 1)$	970 (68)	-509 (44)	6370 (9)	0.96 (4)
H(C2)	6147 (64)	477 (42)	6464 (9)	1.02 (3)
H(C3)	3141 (63)	-1788(41)	6920 (9)	1.00 (3)
H(C4)	5311 (64)	1622 (44)	7050 (8)	1.01 (3)
H(C5)	116 (65)	475 (44)	7026 (9)	1.00 (3)
H(C6)	432 (70)	2777 (40)	7443 (9)	1.03 (3)
$\mathrm{H}^{\prime}(\mathrm{C} 6)$	-1278 (64)	3443 (45)	7072 (8)	1.02 (3)
$\mathrm{H}(\mathrm{O} 2)$	6195 (73)	-1492 (49)	6093 (9)	0.78 (4)
$\mathrm{H}(\mathrm{O} 3)$	6650 (82)	-2461 (41)	7157 (9)	0.82 (3)
H(04)	5130 (75)	87 (48)	7582 (10)	0.83 (4)
H(O6)	1724 (87)	4909 (51)	6945 (10)	0.75 (4)
$\left.\mathrm{H}(\mathrm{Cl})^{\prime}\right)$	-2430 (67)	5465 (43)	6032 (9)	1.06 (3)
$\mathrm{H}^{\prime}\left(\mathrm{C} 1^{\prime}\right)$	-1671(72)	3877 (43)	6341 (8)	1.00 (3)
H(C2')	2731 (62)	4166 (45)	6166 (9)	1.07 (3)
$\mathrm{H}\left(\mathrm{C} 3^{\prime}\right)$	-871 (67)	3725 (51)	5502 (9)	1.09 (4)
$\mathrm{H}\left(\mathrm{C} 4{ }^{\prime}\right)$	-1184 (67)	1528 (46)	5967 (8)	1.06 (3)
H(C5')	-1878 (61)	802 (40)	5336 (8)	1.04 (3)
H(C6')	3054 (74)	-791 (46)	5358 (9)	0.94 (4)
$\mathrm{H}^{\prime}\left(\mathrm{C} 6^{\prime}\right)$	2509 (72)	814 (45)	5108 (8)	1.01 (3)
$\mathrm{H}\left(\mathrm{Ol}^{\prime}\right)$	-1436(78)	6520 (52)	6600 (11)	0.76 (4)
$\mathrm{H}\left(\mathrm{O}^{\prime}\right)$	2994 (77)	6755 (49)	5955 (10)	0.82 (4)
$\mathrm{H}\left(\mathrm{O} 3^{\prime}\right)$	3707 (89)	4331 (47)	5408 (11)	0.80 (4)
$\mathrm{H}\left(\mathrm{O} 5^{\prime}\right)$	-403 (80)	-1842 (50)	5692 (11)	0.77 (4)
$\mathrm{H}\left(\mathrm{O}^{\prime}\right)$	1700 (88)	-1972 (56)	4893 (12)	0.72 (5)

Fig. 1. Molecular conformation and atomic numbering of 4-O- β-D-glucopyranosyl-D-glucitol. The glucose and glucitol moieties are denoted by unprimed and primed designators respectively.
1.406, 1.435 and $1.416 \AA$ respectively, for 12β pyranosides $1.384,1.435$ and $1.427 \AA$ respectively.

The pertinent values for the title compound (1-397, 1.443 and $1.422 \AA$) indicate a bond-length variation that is intermediate between that of α - and β-pyranosides. It is noteworthy that the valence angles of the
acetal sequence, $C(5)-O(5)-C(1) \quad 113.9^{\circ}$ and $\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1) 107 \cdot 8^{\circ}$, are also intermediate, as follows from the mean values of these angles for α pyranosides (113.8 and 111.9°) and β-pyranosides (111.5 and 107.7°). In the analogous hexosylpentitol,

Table 4. Bond distances (\AA) for 4-O- β-D-gluco-pyranosyl-D-glucitol

The e.s.d.'s are given in parentheses.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.519(6)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.496(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.533(5)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.537(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.532(6)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$1.539(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.522(6)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1.537(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.506(6)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1.508(6)$
$\mathrm{C}(1)-\mathrm{O}(5)$	$1.422(5)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	$1.433(5)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.443(4)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	$1.449(5)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.410(5)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	$1.413(6)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.426(5)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)$	$1.438(5)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.431(5)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	$1.442(5)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1.434(6)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}\left(6^{\prime}\right)$	$1.426(6)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.397(5)$		

Table 5. Bond angles $\left(^{\circ}\right.$) for 4-O- β-D-glucopyranosyl-D-glucitol

The e.s.d.'s are given in parentheses.

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.6 (3)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	107.2 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$106 \cdot 3$ (3)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	113.7 (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107 \cdot 2$ (3)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	108.3 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	108.0 (3)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	104.7 (3)
$\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)$	113.9 (3)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	110.8 (3)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	110.5 (3)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	110.1 (4)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1)$	107.8 (3)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	109.0 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	106.3 (3)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	114.5 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	111.0 (3)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)$	109.4 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)$	110.1 (3)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)$	$110 \cdot 0$ (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	108.3 (3)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	114.9 (4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$	112.1 (3)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	109.1 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	112.2 (3)	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	$110 \cdot 1$ (3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$	107.1 (3)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}\left(6^{\prime}\right)$	108.0 (4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	115.9 (3)		
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$106 \cdot 1$ (3)		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	112.3 (4)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)$	115.4 (3)

4-O- β-D-galactopyranosyl-L-rhamnitol (Takagi \& Jeffrey, 1977a), the acetal geometry is very close to that of the mean for β-pyranosides: $\mathrm{C}(1)-\mathrm{O}(1), \mathrm{C}(5)-\mathrm{O}(5)$, $\mathrm{O}(5)-\mathrm{C}(1) \quad 1.384, \quad 1.439, \quad 1.426 \quad \AA$ and $\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1), \mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1) 111 \cdot 2,108 \cdot 6^{\circ}$ respectively.

The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles range from $106 \cdot 3$ (3) to $115.9(3)^{\circ}$ (mean 111.5°), the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles from 104.7 (3) to $112.3(4)^{\circ}$ (mean $109 \cdot 0^{\circ}$). The exocyclic angles at $C(5)$ show the familiar trend of pyranosides that $C(4)-C(5)-C(6)\left(115.9^{\circ}\right)$ is enlarged at the expense of $\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)\left(106 \cdot 1^{\circ}\right)$ (Arnott \& Scott, 1972). The bridge angle $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)$ is 115.4° and agrees with bridge angles of ($1 \rightarrow 4$)-linked glycosides.

The $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond lengths, which are included in Table 3, average 1.02 and $0.78 \AA$ respectively. The bond angles involving H atoms have mean values distributed over the different classes as follows: $\mathrm{H}-\mathrm{C}-\mathrm{C}$ 109, $\mathrm{H}-\mathrm{C}-\mathrm{O}$ 110, $\mathrm{H}-\mathrm{O}-\mathrm{C} 109$ and $\mathrm{H}-\mathrm{C}-\mathrm{H} 109^{\circ}$.

The ring torsion angles (Table 6) vary from 57.3 (4) to $64.3(4)^{\circ}$ (mean 60.9°). Though these values are within the range commonly observed, the mean value is larger than that reported for pyranose rings in monoand disaccharides, which are about 58° (Hirotsu \& Shimada, 1974; Jeffrey, McMullan \& Takagi, 1977). This is mainly due to the torsion angles about $C(2)-C(3)$ and $C(3)-C(4)$ (mean $62 \cdot 2^{\circ}$), which deviate nearly 8° from the mean value observed in saccharide structures. Accordingly, the ring-puckering parameters of Cremer \& Pople (1975) ($q_{2}=0.082 \AA$, $q_{3}=0.623 \AA, Q=0.628 \AA, \theta=7.5^{\circ}$ and $\varphi=213^{\circ}$) and the average deviation of atoms from the three leastsquares planes through opposite bonds $[0.023 \AA$ from plane $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(4), \mathrm{C}(5), 0.033 \AA$ from $\mathrm{C}(3), \mathrm{C}(4)$, $\mathrm{O}(5), \mathrm{C}(1)$ and $0.011 \AA$ from $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5), \mathrm{O}(5)]$ indicate a distorted ${ }^{4} C_{1}$ chair.

The exocyclic torsion angles (Table 6) have values close to 60 or 180° which correspond to the ideal gauche or trans arrangements respectively. The confor-

Table 6. Endo- and exocyclic torsion angles $\left(^{\circ}\right.$) for the glucopyranosyl moiety of 4-O- β-D-glucopyranosyl-Dglucitol

The torsion angle $A(1)-A(2)-A(3)-A(4)$ is viewed along $A(2)-A(3)$, with a clockwise rotation of $A(1)$ to $A(4)$ taken to be positive.
Endocyclic

$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$57.3(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-60.9(4)$
Exocyclic	
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$178.4(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$174 \cdot 0(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$-64.9(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$178.5(3)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$177.4(3)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$56.8(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$-178.4(3)$

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$64 \cdot 3(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)$	$61 \cdot 1(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$-63 \cdot 2(4)$	$\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$-58 \cdot 3(4)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-177 \cdot 6(3)$	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$-61 \cdot 8(4)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$-60 \cdot 3(4)$	$\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1)$	$-174 \cdot 1(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$178 \cdot 0(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)$	$-174 \cdot 0(3)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$176 \cdot 2(3)$		
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$57 \cdot 4(4)$	$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)$	$-68 \cdot 2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$58 \cdot 0(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)$	$173 \cdot 3(3)$

mation about exocyclic $\mathrm{C}(5)-\mathrm{C}(6)$ is gauche-gauche, identical to that of β-D-glucose (Chu \& Jeffrey, 1968).

The glucitol residue has a non-planar carbon-chain conformation which is derived from the planar extended chain by a rotation of 120° about $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$ and C(4')-C(5') (Table 7).

As Jeffrey \& Kim (1970) have pointed out, alditols adopt a conformation with a planar extended carbon chain, provided this does not imply conformational states with parallel $\mathrm{C}-(n)-\mathrm{O} / \mathrm{C}-(n+2)-\mathrm{O}$ bonds. In that case the carbon chain adopts a bent non-planar conformation. Observations on a number of crystalline

Table 7. Torsion angles $\left(^{\circ}\right)$ for the glucitol moiety of 4-O- β-D-glucopyranosyl-D-glucitol with corresponding values for $\mathrm{D}-\mathrm{glucitol}$ and the glucitol moiety of the glucitol-pyridine complex

	4-O- β - D - Glucopyranosyl- D-glucitol ${ }^{(a)}$	D-Glucitol ${ }^{(6)}$	Glucitolpyridine ${ }^{(c)}$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	176.1 (3)	-173.9 (3)	-58.7 (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	-68.0 (4)	-55.4 (3)	62.6 (3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	-69.7 (4)	-52.4 (3)	-69.5 (3)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	169.5 (3)	-174.3 (3)	169.6 (2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	172.2 (3)	-173.4 (2)	171.2 (2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	51.5 (4)	64.8 (3)	50.4 (3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	172.7 (3)	-178.1 (2)	$161 \cdot 3$ (2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)$	-63.4 (4)	-54.5 (3)	-75.4 (3)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	-66.0(4)	-56.5 (3)	-78.2 (3)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)$	57.9 (4)	67.1 (3)	45.1 (3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	74.4 (4)	-179.8(2)	178.6 (2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	-161.6(3)	-55.4 (3)	-57.6 (3)
$\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-49.3 (4)	57.2 (3)	55.0 (3)
$\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	74.8 (4)	-178.4 (3)	178.7 (2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}\left(6^{\prime}\right)$	-177.2 (3)	-174.1 (3)	70.6 (3)
$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}\left(6^{\prime}\right)$	59.2 (4)	62.3 (4)	-52.4 (3)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)$	125.1 (3)		
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)$	-108.4 (4)		

References: (a) this article, (b) Park, Jeffrey \& Hamilton (1971), (c) Kim, Jeffrey \& Rosenstein (1971).

Fig. 2. Views of the glucitol moieties of (a) 4-O- β-D glucopyranosyl-D-glucitol, (b) D-glucitol (Park, Jeffrey \& Hamilton, 1971) and (c) the D-glucitol-pyridine complex (Kim, Jeffrey \& Rosenstein, 1971) along the bisector of $C\left(2^{\prime}\right)-C\left(3^{\prime}\right)-C\left(4^{\prime}\right)$.
alditols (Jeffrey \& Kim, 1970), including D-glucitol, are consistent with this hypothesis. However, the conformation of the glucitol residue of D-glucosyl-D-glucitol is $M A A^{*}$ which differs from that found in the A form of D-glucitol (Park, Jeffrey \& Hamilton, 1971) and in the D-glucitol-pyridine complex (Kim, Jeffrey \& Rosenstein, 1971), which both have the stable MAP bentchain conformation (Fig. 2) predicted by the above hypothesis. The observed MAA conformation is unstable because of the almost parallel orientation of the $C\left(5^{\prime}\right)-C\left(6^{\prime}\right)$ and $C\left(3^{\prime}\right)-O\left(3^{\prime}\right)$ bonds (angle $\left.8 \cdot 6^{\circ}\right)$. The terminal hydroxyl groups of the glucitol residue and the A form of D -glucitol have the same extended $A A$ conformation, whereas in D -glucitol-pyridine these conformations are both bent (see Table 7 and Fig. 2). Clearly, environmental effects in the crystal not only determine the conformation of the terminal hydroxyl groups, but also strongly influence the carbon-chain conformation, which so far on stereochemical considerations and experimental results has been considered as a predominantly molecular property (Jeffrey \& Kim, 1970).

The torsion angles involving H atoms on adjacent C atoms (Table 8) differ little from the ideal trans or gauche arrangements (mean deviation 4°), whereas with one exception $\left[\mathrm{H}(\mathrm{C} 4) \cdots \mathrm{H}(\mathrm{O} 4)-61(3)^{\circ}\right]$ the $\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}$ torsion angles show large deviations (mean 38°) from the ideal value of 60° which would be favoured by the isolated molecule (Sundaralingam, 1968; Takagi \& Jeffrey, 1977b). This behaviour, which is widespread in carbohydrate structures, is caused by intermolecular hydrogen bonding which offsets the loss in energy resulting from the eclipsing of vicinal H atoms.

The torsion angles characterizing the glycosidic linkage are $\varphi_{1}\left[\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)\right]=-68.2(4)^{\circ}$

[^2]Table 8. Torsion angles $\left({ }^{\circ}\right)$ involving the hydrogen atoms for 4-O- β-D-glucopyranosyl-D-glucitol

$\mathrm{H}(\mathrm{C} 1) \cdots \mathrm{H}(\mathrm{C} 2)^{*}$	$-177(3)$	$\mathrm{H}(\mathrm{C} 2) \cdots \mathrm{H}(\mathrm{O} 2) \dagger$	$-32(3)$
$\mathrm{H}(\mathrm{C} 2) \cdots \mathrm{H}(\mathrm{C} 3)$	$178(3)$	$\mathrm{H}(\mathrm{C} 3) \cdots \mathrm{H}(\mathrm{O} 3)$	$-26(3)$
$\mathrm{H}(\mathrm{C} 3) \cdots \mathrm{H}(\mathrm{C} 4)$	$-175(3)$	$\mathrm{H}(\mathrm{C} 4) \cdots \mathrm{H}(\mathrm{O} 4)$	$-61(3)$
$\mathrm{H}(\mathrm{C} 4) \cdots \mathrm{H}(\mathrm{C} 5)$	$180(3)$	$\mathrm{H}(\mathrm{C} 6) \cdots \mathrm{H}(\mathrm{O} 6)$	$-151(3)$
$\mathrm{H}(\mathrm{C} 5) \cdots \mathrm{H}(\mathrm{C} 6)$	$65(3)$	$\mathrm{H}^{\prime}(\mathrm{C} 6) \cdots \mathrm{H}(\mathrm{O} 6)$	$-35(4)$
$\mathrm{H}(\mathrm{C} 5) \cdots \mathrm{H}^{\prime}(\mathrm{C} 6)$	$-60(3)$		
$\mathrm{H}\left(\mathrm{C} 1^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{C} 2^{\prime}\right)$	$177(3)$	$\mathrm{H}\left(\mathrm{C} 1^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 1^{\prime}\right)$	$35(4)$
$\mathrm{H}^{\prime}\left(\mathrm{C} 1^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{C} 2^{\prime}\right)$	$-60(3)$	$\mathrm{H}^{\prime}\left(\mathrm{C} 1^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 1^{\prime}\right)$	$-87(4)$
$\mathrm{H}\left(\mathrm{C} 2^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{C} 3^{\prime}\right)$	$167(3)$	$\mathrm{H}\left(\mathrm{C} 2^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 2^{\prime}\right)$	$-29(3)$
$\mathrm{H}\left(\mathrm{C} 3^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{C} 4^{\prime}\right)$	$-60(3)$	$\mathrm{H}\left(\mathrm{C} 3^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 3^{\prime}\right)$	$93(4)$
$\mathrm{H}\left(\mathrm{C} 4^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{C} 5^{\prime}\right)$	$66(3)$	$\mathrm{H}\left(\mathrm{C} 5^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 5^{\prime}\right)$	$158(4)$
$\mathrm{H}\left(\mathrm{C} 5^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{C} 6^{\prime}\right)$	$-176(3)$	$\mathrm{H}\left(\mathrm{C} 6^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 6^{\prime}\right)$	$-26(4)$
$\mathrm{H}\left(\mathrm{C} 5^{\prime}\right) \cdots \mathrm{H}^{\prime}\left(\mathrm{C} 6^{\prime}\right)$	$68(3)$	$\mathrm{H}^{\prime}\left(\mathrm{C} 6^{\prime}\right) \cdots \mathrm{H}\left(\mathrm{O} 6^{\prime}\right)$	$94(4)$

[^3]Table 9. Geometry of the hydrogen bonds in 4-O- β - $\mathrm{D}-$ glucopyranosyl-D-glucitol

Number		$\mathrm{O}-\mathrm{H}$ (\AA)	$\mathrm{H} \cdots \mathrm{O}$ (A)	$\mathrm{H} \cdots \mathrm{O}^{*}$ (A)	$0 \ldots 0$ $\text { (} \AA \text {) }$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (${ }^{\circ}$)	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}^{*}$ ${ }^{\circ}$)	Symmetry operation \dagger
1	$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2) \cdots \mathrm{O}\left(5^{\prime}\right)$	0.77 (4)	2.01 (4)	1.83	2.758 (4)	164 (4)	162	655.1
2	$\mathrm{O}(3)-\mathrm{H}(\mathrm{O} 3) \cdots \mathrm{O}(4)$	0.82 (3)	2.04 (3)	1.89	2.850 (4)	174 (3)	174	646.4
3	$\mathrm{O}(4)-\mathrm{H}(\mathrm{O} 4) \cdots \mathrm{O}(6)$	0.83 (4)	1.87 (4)	1.75	2.682 (4)	165 (4)	164	646.4
4	$\mathrm{O}(6)-\mathrm{H}(06) \cdots \mathrm{O}\left(1^{\prime}\right)$	0.75 (4)	2.02 (4)	1.83	2.759 (4)	165 (5)	163	555.1
5	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(\mathrm{Ol}^{\prime}\right) \cdots \mathrm{O}(2)$	0.76 (4)	2.43 (4)	2.31	2.973 (4)	129 (4)	126	465.1
6	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(\mathrm{Ol}^{\prime}\right) \cdots \mathrm{O}(3)$	0.76 (4)	$2 \cdot 19$ (4)	2.02	2.885 (4)	152 (4)	149	465.1
7	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{H}\left(\mathrm{O}^{\prime}\right) \cdots \mathrm{O}(2)$	0.82 (4)	1.96 (4)	1.83	2.782 (4)	174 (4)	174	565.1
8	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{H}\left(\mathrm{O}^{\prime}\right) \cdots \mathrm{O}\left(6^{\prime}\right)$	0.80 (4)	2.28 (4)	$2 \cdot 14$	2.978 (5)	147 (4)	145	556.3
9	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{H}\left(\mathrm{O}^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	0.80 (4)	2.26 (4)	2.20	2.669 (4)	113 (4)	109	555.1
10	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{H}\left(\mathrm{O}^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	0.77 (4)	2.01 (4)	1.82	2.769 (4)	171 (4)	171	545.1
11	$\mathrm{O}\left(6^{\prime}\right)-\mathrm{H}\left(\mathrm{O} 6^{\prime}\right) \cdots \mathrm{O}\left(5^{\prime}\right)$	0.72 (4)	2.58 (4)	2.38	$3 \cdot 179$ (4)	143 (4)	140	546.3
12	$\mathrm{O}\left(6^{\prime}\right)-\mathrm{H}\left(\mathrm{O}^{\prime}\right) \cdots \mathrm{O}\left(6^{\prime}\right)$	0.72 (5)	2.56 (5)	$2 \cdot 35$	3.206 (4)	151 (4)	148	546.3

* Corrected by expanding the covalent $\mathrm{O}-\mathrm{H}$ bond distances to the neutron diffraction value of $0.96 \AA$ in the direction of the bond.
\dagger The symmetry operation is performed on the acceptor O atoms. The first set of numbers specifies the lattice translations, e.g. 645.4 is $+a-b$ from 555.4. The last digit indicates one of the following symmetry operations: (1) $x, y, z ;(2) \frac{1}{2}-x,-y, \frac{1}{2}+z$; (3) $\frac{1}{2}+x, \frac{1}{2}-y,-z$; (4) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Fig. 3. A view of the molecular packing and hydrogen bonds of 4O - $\boldsymbol{\beta}$-D-glucopyranosyl-D-glucitol seen along a. Hydrogen bonds, numbered according to Table 9 , are indicated by dashed lines.
and $\varphi_{2}\left[\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)\right]=125 \cdot 1(3)^{\circ}$. The torsion angle φ_{1} is close to -71°, which is the preferred conformation for methyl β-pyranosides (Takagi \& Jeffrey, 1977a), whereas the arrangement of bonds about $\mathbf{O}(1)-\mathrm{C}\left(4^{\prime}\right)$ is nearly eclipsed. In D-galactosyl-Lrhamnitol the corresponding angles are -70.8° and -127.8° respectively. In a recent study Pérez \& Marchessault (1978) have pointed out that for oligosaccharides the range of φ_{1} is much more restricted than that of φ_{2} and they interpreted the relative invariance of φ_{1} as a manifestation of the exo anomeric effect. As the presence of an intramolecular hydrogen bond, which connects contiguous residues, is a common feature of $\beta-(1 \rightarrow 4)$-linked disaccharides (Sundaralingam, 1968; Hirotsu \& Shimada, 1974), the restricted rotation about anomeric $\mathrm{C}(1)-\mathrm{O}(1)$ would imply that in the formation of intramolecular hydrogen bonds the rotational flexibility about $\mathrm{O}(1)-\mathrm{C}\left(4^{\prime}\right)$ plays the dominant role.

The hydrogen bonding

The hydrogen-bond geometry is described in Table 9 and illustrated in Fig. 3. The nine hydroxyl groups all act as hydrogen-bond donors to form twelve hydrogen bonds. Three hydroxyl groups, $\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}, \mathrm{O}\left(3^{\prime}\right)-\mathrm{H}$ and $\mathrm{O}\left(6^{\prime}\right)-\mathrm{H}$, are involved in interactions of the bifurcated type, $\mathrm{O}(3)-\mathrm{H}$ is not an acceptor and $\mathrm{O}\left(5^{\prime}\right)-\mathrm{H}$ and $\mathrm{O}\left(6^{\prime}\right)-\mathrm{H}$ are double acceptors, whereas ring $\mathrm{O}(5)$ and glycosidic $O(1)$ do not accept a hydrogen bond. The presence of two intramolecular hydrogen bonds, one of which is involved in a bifurcated bond, and three bifurcated interactions give rise to an unusual and complicated hydrogen-bond pattern. There are three infinite donor-acceptor chains: $\mathrm{O}(6) \rightarrow \mathrm{O}\left(1^{\prime}\right) \rightarrow \mathrm{O}(3) \rightarrow$ $\mathrm{O}(4) \rightarrow \mathrm{O}^{\prime}(6), \mathrm{O}\left(2^{\prime}\right) \rightarrow \mathrm{O}(2) \rightarrow \mathrm{O}\left(5^{\prime}\right) \rightarrow \mathrm{O}^{\prime}\left(2^{\prime}\right)$ and $\mathrm{O}\left(6^{\prime}\right) \rightarrow$ $O^{\prime}\left(6^{\prime}\right)$, which are mutually connected by bifurcated hydroxyl groups. With the exception of the bifurcated bonds, the $\mathrm{H} \cdots \mathrm{O}$ distances span the narrow range 1.75 to $1.89 \AA$.

The intramolecular hydrogen bond $\mathrm{O}(6)-\mathrm{H} \cdots$ $\mathrm{O}\left(1^{\prime}\right)$, with $\mathrm{H} \cdots \mathrm{O} 1.83 \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 163^{\circ}$, is a strong interaction stabilizing the conformation of the glycosidic linkage, whereas the other intramolecular bond, $\mathrm{O}\left(3^{\prime}\right)-\mathrm{H} \cdots \mathrm{O}\left(2^{\prime}\right)$, which is a branch of a bifurcated interaction, with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ 109° should be considered as a weak interaction. Of the three bifurcated bonds two are of the symmetrical type and one is asymmetrical. Although bifurcated interactions have been reported for methyl α-D-altropyranoside (Poppleton, Jeffrey \& Williams, 1975), a-Lsorbose (Kim \& Rosenstein, 1967) and β-D-fructose (Takari \& Jeffrey, 1977c), their occurrence in sacch ide structures is rare and the presence of three suct. oonds in a single structure represents a unique case. A remarkable feature of these bifurcated bonds is the near coplanarity of the H atom with the three
surrounding O atoms. For the three bonds involving $\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}, \mathrm{O}\left(3^{\prime}\right)-\mathrm{H}$ and $\mathrm{O}\left(6^{\prime}\right)-\mathrm{H}$ the distances of the H atoms from the plane of the O atoms are $0.13,0.16$ and $0.02 \AA$ respectively.

The authors thank Dr F. R. Wassenburg of the Organic Chemistry Laboratory of the University of Utrecht for preparing a sample of $4-O-\beta$-D-gluco-pyranosyl-D-glucitol.

References

Arnott, S. \& Scott, w. E. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 324-335.
Brown, G. M. \& Levy, H. A. (1973). Acta Cryst. B29, 790797.

Chu, S. S. C. \& Jeffrey, G. A. (1967). Acta Cryst. 23, 1038-1049.
Chu, S. S. C. \& Jeffrey, G. A. (1968). Acta Cryst. B24, 830-838.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 225-270. Copenhagen: Munksgaard.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Fries, D. C., Rao, S. T. \& Sundaralingam, M. (1971). Acta Cryst. B27, 994-1005.
Gress, M. E. \& Jeffrey, G. A. (1977). Acta Cryst. B33, 2490-2495.
Hirotsu, K. \& Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872-1879.
Jeffrey, G. A. \& Kim, H. S. (1970). Carbohydr. Res. 14, 207-216.
Jeffrey, G. A., McMullan, R. K. \& Takagi, S. (1977). Acta Cryst. B33, 728-737.
Jeffrey, G. A., Pople, J. A., Binkley, J. S. \& Vishveshwara, S. (1978). J. Am. Chem. Soc. 100, 373379.

Jeffrey, G. A. \& Takagi, S. (1977). Acta Cryst. B33, 738742.

Kanters, J. A., Gaykema, W. P. J. \& Roelofsen, G. (1978). Acta Cryst. B34, 1873-1881.

Kanters, J. A., Roelofsen, G. \& Smits, D. (1977). Acta Cryst. B33, 3635-3640.
Kim, H. S., Jeffrey, G. A. \& Rosenstein, R. D. (1971). Acta Cryst. B27, 307-314.
Kim, S. H. \& Rosenstein, R. D. (1967). Acta Cryst. 22, 648-656.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523. Larson, A. C. (1967). Acta Cryst. 23, 664-666.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declercq, J. P. (1974). MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Park, Y. J., Jeffrey, G. A. \& Hamilton, W. C. (1971). Acta Cryst. B27, 2393-2401.
Pérez, S. \& Marchessault, R. H. (1978). Carbohydr. Res. 65, 114-120.
Poppleton, B. J., Jeffrey, G. A. \& Williams, G. J. B. (1975). Acta Cryst. B3 1, 2400-2404.

Stewart, J. M. (1976). The XRAY system. Tech. Rep. TR466. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sundaralingam, M. (1968). Biopolymers, 6, 189-213.
Takagl, S. \& Jeffrey, G. A. (1977a). Acta Cryst. B33, 2377-2380.
Takagi, S. \& Jeffrey, G. A. (1977b). Acta Cryst. B33, 3033-3040.
Takagi, S. \& Jeffrey, G. A. (1977c). Acta Cryst. B33, 3510-3515.
Takugasawa, F. \& Jacobson, R. A. (1978). Acta Cryst. B34, 213-218.
Tanaka, I., Tanaka, N., Ashida, T. \& Kakudo, M. (1976). Acta Cryst. B32, 155-160.

Acta Cryst. (1979). B35, 1162-1166

The Crystal and Molecular Structure of 7-(Methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-α-D-threo-hex-2-enopyranosid-4-yl)theophylline, $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{7}$

By Biserka Kojić-Prodić
'Rudjer Boškovič' Institute, PO Box 1016, 41001 Zagreb, Yugoslavia

(Received 15 November 1978; accepted 7 February 1979)

Abstract

The title compound, $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{7}$, crystallizes in the orthorhombic space group $P 2,22_{1}$ with $a=$ $13 \cdot 1444$ (4), $b=14 \cdot 9593$ (4), $c=10 \cdot 5007$ (3) $\AA, Z=$ 4. The structure was refined to an R of 0.037 . The

0567-7408/79/051162-05\$01.00
orientation of the base relative to the sugar ring, defined in terms of rotation about the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}(7)$ glycosyl bond, is anti $\left(-81 \cdot 0^{\circ}\right)$. The base conformation can be described by the mean values of the torsion angles of 1.8 and 0.0° for the six- and five-membered rings respectively. The sugar moiety exhibits a half-chair ${ }^{0} \mathrm{H}_{5}$ © 1979 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34212 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * M, A and P refer to the conformation about $\mathrm{C}-\mathrm{C}$ bonds; $M=$ $M s c, A=a p$ and $P=P s c$, according to the convention of Klyne \& Prelog (1960).

[^3]: * Refers to the torsion angle $\mathrm{H}(\mathrm{C} 1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 2)$.
 \dagger Refers to the torsion angle $\mathrm{H}(\mathrm{C} 2)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2)$.

